We were still recently chatting, really like old ladies around a cup of tea, about the 2006 polonium poisoning case. As usual, most of our friends have been overloaded by the sensational style media news and turned out to be confused or totally out of track. Some looked sincerly scared, and maybe they're not so wrong, after all.
But, as in most of the cases, media are extremely good in distorting facts and figures and create some panic. In the end, they are the ones who still are selling us as asthonishing surprise the facts winter is cold and summer is hot. What a news!
So for who's interested in this, I collected some infos rather fair and reliable. Enjoy.
Famous polonium poisoning cases
Notably, the murder of Alexander Litvinenko, a Russian dissident, in 2006 was announced as due to 210Po poisoning. Generally, 210Po is most lethal when it is ingested. According to Nick Priest, a radiation expert speaking on Sky News on December 2, Litvinenko was probably the first person ever to die of the acute α-radiation effects of 210Po.
Actually, Irène Joliot-Curie was the first person ever to die from the radiation effects of polonium (due to a single intake) in 1956. She was accidentally exposed to polonium in 1946 when a sealed capsule of the element exploded on her laboratory bench. A decade later, on 17 March 1956, she died in Paris from leukemia.
According to the book "The Bomb in the Basement" several death cases in Israel during 1957-1969 were caused by 210Po. A leak was discovered at a Weizmann Institute laboratory in 1957. Traces of 210Po were found on the hands of Prof. Dror Sadeh, a physicist who researched radioactive materials. Medical tests indicated no harm, but the tests did not include bone marrow. Sadeh died prematurely from cancer. One of his students died of leukemia, and two colleagues died after a few years, both from cancer. The issue was investigated secretly, and there was never any formal admission that a connection between the leak and the deaths had existed.
Basic facts about Polonium-210
Po-210 is a naturally occurring radioactive material. It is found in very low concentrations in the environment as a part of the uranium decay chain and can be derived from lead-containing wastes from uranium, vanadium, and radium refining operations - however, not in significant quantities. It may be also produced artificially, which requires fairly sophisticated equipment used in the nuclear industry.
Po-210 emits alpha particles and is 5,000 times more radioactive than radium. The half-life of Po-210 is 138 days. Alpha radiation delivers a large amount of energy to living cells and can cause considerable damage and cell death. Alpha particles lose most of their energy on impact, and cannot move further into matter, hence alpha radiation does not penetrate through surfaces (e.g. paper, human skin or clothes).
Po-210 is used in some industrial applications such as static eliminators, which are devices designed to eliminate static electricity in processes such as rolling paper, manufacturing sheet plastics, and spinning synthetic fibers. It is also used in nuclear weapons production, as a power supply in small satellites, and in the oil industry.
Health risk of Po-210
Po-210 represents a radiation hazard only if taken into the body – by inhalation, ingestion, or getting into a wound. This “internal contamination” can cause irradiation of internal organs, which can result in serious medical symptoms or death. The toxicity of Po-210 is much higher than that of cyanides, for example. Nevertheless it does not represent a risk to human health as long as it remains outside the body. Most traces of it can be eliminated through careful hand-washing and showering, or washing machine and dishwasher cycles.
People who come into contact with a person contaminated by Po-210 will not be exposed to radiation (irradiated) simply by being in the proximity of this person, unless they ingest or inhale bodily fluids of the contaminated person. For the general public, normal hygiene measures (such as thorough washing of hands and washing of fruit/vegetables before consumption) are sufficient.
Polonium is a chemical element in the periodic table that has the symbol Po and atomic number 84. A rare and highly radioactive metalloid, polonium is chemically similar to tellurium and bismuth, and it occurs in uranium ores. Polonium has been studied for possible use in heating spacecraft. It is unstable; all isotopes of polonium are radioactive.
Applications
When it is mixed or alloyed with beryllium, polonium can be a neutron source: beryllium releases a neutron upon absorption of an alpha particle that is supplied by 210Po. It has been used in this capacity as a neutron trigger or initiator for nuclear weapons.
History
Also called tentatively "Radium F", polonium was discovered by Marie Skłodowska-Curie and her husband Pièrre Curie in 1898 and was later named after Marie Curie's native land of Poland. Poland at the time was under Russian, Prussian, and Austrian partition, and did not exist as an independent country. It was Curie's hope that naming the element after her native land would publicize its lack of independence. Polonium may be the first element named to highlight a political controversy. Poland became an independent country again in 1918, following World War I.
This element was the first one discovered by the Curies while they were investigating the cause of pitchblende radioactivity. The pitchblende, after removal of the radioactive elements uranium and thorium, was more radioactive than both the uranium and thorium put together. This spurred the Curies on to find additional radioactive elements. The Curies first separated out polonium from the pitchblende, and then within a few years, also isolated radium.
Occurrence
Polonium is a very rare element in nature because of the short half-life of all its isotopes. It is found in uranium ores at about 100 micrograms per metric ton (1 part in 1010), which is approximately 0.2% of the abundance of radium. The amounts in the Earth's crust are not harmful. Polonium has been found in tobacco smoke from tobacco leaves grown with phosphate fertilizers.
Synthesis by (n,γ) reaction
In 1934 an experiment showed that when natural 209Bi is bombarded with neutrons, 210Bi is created, which then decays to 210Po via β decay. Polonium may now be made in milligram amounts in this procedure which uses high neutron fluxes found in nuclear reactors. Only about 100 grams are produced each year, making polonium exceedingly rare.
Synthesis by (p, n) and (p,2n) reactions
It has been found that the longer lived isotopes of polonium can be formed by proton bombardment of bismuth using a cyclotron. Other more neutron rich isotopes can be formed by the irradiation of platinum with carbon nuclei.
Isotopes
Polonium has 25 known isotopes, all of which are radioactive. They have atomic masses that range from 194u to 218u. 210Po is the most widely available. 209Po (half-life 103 years) and 208Po (half-life 2.9 years) can be made through the alpha, proton, or deuteron bombardment of lead or bismuth in a cyclotron.
210Po
210Po is an alpha emitter that has a half-life of 138.376 days; it decays directly to its daughter isotope 206Pb. A milligram of 210Po emits as many alpha particles per second as 4.215 grams of 226Ra. A few curies (1 curie equals 37 gigabecquerels) of 210Po emit a blue glow which is caused by excitation of surrounding air. A single gram of 210Po generates 140 watts of power. Because it emits many alpha particles, which are stopped within a very short distance in dense media and release their energy, 210Po has been used as a lightweight heat source to power thermoelectric cells in artificial satellites; for instance, 210Po heat source was also used in each of the Lunokhod rovers deployed on the surface of the Moon, to keep their internal components warm during the lunar nights. Some anti-static brushes contain up to 500 microcuries of 210Po as a source of charged particles for neutralizing static electricity in materials like photographic film.
The majority of the time 210Po decays by emission of an alpha particle only, not by emission of an alpha particle and a gamma ray. About one in 100,000 decays results in the emission of a gamma ray. This low gamma ray production rate makes it more difficult to find and identify this isotope. Rather than gamma ray spectroscopy, alpha spectroscopy is the best method of measuring this isotope.
Chemical characteristics
The chemistry of polonium is similar to that of tellurium and bismuth. Polonium dissolves readily in dilute acids, but is only slightly soluble in alkalis. The hydrogen compound PoH2 is liquid at room temperature (M.P. -36.1°C to B.P. 35.3°C). Halides of the structure PoX2, PoX4 and PoX6 are known. The two oxides PoO2 and PoO3 are the products of oxidation of polonium.
210Po (in common with 238Pu) has the ability to become airborne with ease: if a sample is heated in air to 328 K (55°C, 131°F), 50% of it is vaporized in 45 hours, even though the melting point of polonium is 527 K (254°C, 489°F) and its boiling point is 1235 K (962°C, 1763°F).More than one hypothesis exists for how polonium does this; one suggestion is that small clusters of polonium atoms are spalled off by the alpha decay.
It has been reported that some microbes can methylate polonium by the action of methylcobalamin. This is similar to the way in which mercury, selenium and tellurium are methylated in living things to create organometallic compounds. As a result when considering the biochemistry of polonium one should consider the possibility that the polonium will follow the same biochemical pathways as selenium and tellurium.
Solid state form
The alpha form of solid polonium has a simple cubic crystal structure with an edge length of 3.352 Å.
The beta form of polonium is rhombohedral; it has been reported in the chemical literature, along with the alpha form, several times. A picture of it is present on the web.
Two papers report X-ray diffraction experiments on polonium metal. The first report of the crystal structure of polonium was done using electron diffraction.
Toxicity Overview
By mass, polonium is around 5 million times more toxic than hydrogen cyanide (the oral LD50 for 210Po is about 50 ng (see below) compared to about 250 mg for hydrogen cyanide). The main hazard is its intense radioactivity (as an alpha emitter), which makes it very difficult to handle safely - one gram of Po will self-heat to a temperature of around 500°C. Even in microgram amounts, handling 210Po is extremely dangerous, requiring specialized equipment and strict handling procedures. Alpha particles emitted by polonium will damage organic tissue easily if polonium is ingested, inhaled, or absorbed (though they do not penetrate the epidermis and hence are not hazardous if the polonium is outside the body).
Acute effects
The median lethal dose (LD50) for acute radiation exposure is generally about 4.5 Sv. The committed effective dose equivalent 210Po is 0.51 µSv/Bq if ingested, and 2.5 µSv/Bq if inhaled. Since 210Po has an activity of 166 TBq per gram (1 gram produces 166×1012 decays per second), a fatal 4-Sv dose can be caused by ingesting 8.8 MBq (238 microcurie), about 50 nanograms (ng), or inhaling 1.8 MBq (48 microcurie), about 10 ng.
One gram of 210Po could thus in theory poison 100 million people of whom 50 million would die. The actual toxicity of 210Po is lower than these estimates, because radiation exposure that is spread out over several weeks (the biological half-life of polonium in humans is 30 to 50 days) is somewhat less damaging than an instantaneous dose. It has been estimated that a minimal lethal dose of 210Po for an 80 kg person is 4 millicuries, or 0.89 micrograms, still an extremely small amount.
Long term (chronic) effects
In addition to the acute effects, radiation exposure (both internal and external) carries a long-term risk of death from cancer of 5–10% per Sv. The general population is exposed to small amounts of polonium as a radon daughter in indoor air; the isotopes 214Po and 218Po are thought to cause the majority of the estimated 15,000-22,000 lung cancer deaths in the US every year that have been attributed to indoor radon. Tobacco smoking causes significant additional exposure to Po.
Regulatory exposure limits
The maximum allowable body burden for ingested 210Po is only 1,100 Bq (0.03 microcurie), which is equivalent to a particle weighing only 6.8 picograms. The maximum permissible workplace concentration of airborne 210Po is about 10 Bq/m3 (3 × 10-10 µCi/cm3). The target organs for polonium in humans are the spleen and liver. As the spleen (150 g) and the liver (1.3 to 3 kg) are much smaller than the rest of the body, if the polonium is concentrated in these vital organs, it is a greater threat to life than the dose which would be suffered (on average) by the whole body if it were spread evenly throughout the body, in the same way as cesium or tritium (as T2O).
210Po is widely used in industry, and readily available with little regulation or restriction. In the US, a tracking system run by the Nuclear Regulatory Commission will be implemented in 2007 to register purchases of more than 16 curies of polonium 210 (enough to make up 5,000 lethal doses). The IAEA "is said to be considering tighter regulations... There is talk that it might tighten the polonium reporting requirement by a factor of 10, to 1.6 curies."
Treatment
It has been suggested that chelation agents such as British Anti-Lewisite (dimercaprol) can be used to decontaminate humans. In one experiment, rats were given a fatal dose of 1.45 MBq/kg (8.7 ng/kg) of 210Po; all untreated rats were dead after 44 days, but 90% of the rats treated with the chelation agent HOEtTTC remained alive after 5 months.
Trivia
Polonium-210 is available to buy online for just $69 plus shipping and handling (safe one, hopefully). And no license is required!
New Mexico firm United Nuclear Scientific Equipment & Supplies offers a sample of radioactive element on its website, as part of its aim of putting the "fun back into science". What a fun!
See you.
BR/zespri
0 Comments:
Post a Comment
<< Home